You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
996 lines
33 KiB
996 lines
33 KiB
"use strict"; |
|
|
|
var _stringify = require("babel-runtime/core-js/json/stringify"); |
|
|
|
var _stringify2 = _interopRequireDefault(_stringify); |
|
|
|
var _assert = require("assert"); |
|
|
|
var _assert2 = _interopRequireDefault(_assert); |
|
|
|
var _babelTypes = require("babel-types"); |
|
|
|
var t = _interopRequireWildcard(_babelTypes); |
|
|
|
var _leap = require("./leap"); |
|
|
|
var leap = _interopRequireWildcard(_leap); |
|
|
|
var _meta = require("./meta"); |
|
|
|
var meta = _interopRequireWildcard(_meta); |
|
|
|
var _util = require("./util"); |
|
|
|
var util = _interopRequireWildcard(_util); |
|
|
|
function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } else { var newObj = {}; if (obj != null) { for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) newObj[key] = obj[key]; } } newObj.default = obj; return newObj; } } |
|
|
|
function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; } |
|
|
|
var hasOwn = Object.prototype.hasOwnProperty; /** |
|
* Copyright (c) 2014, Facebook, Inc. |
|
* All rights reserved. |
|
* |
|
* This source code is licensed under the BSD-style license found in the |
|
* https://raw.github.com/facebook/regenerator/master/LICENSE file. An |
|
* additional grant of patent rights can be found in the PATENTS file in |
|
* the same directory. |
|
*/ |
|
|
|
function Emitter(contextId) { |
|
_assert2.default.ok(this instanceof Emitter); |
|
t.assertIdentifier(contextId); |
|
|
|
// Used to generate unique temporary names. |
|
this.nextTempId = 0; |
|
|
|
// In order to make sure the context object does not collide with |
|
// anything in the local scope, we might have to rename it, so we |
|
// refer to it symbolically instead of just assuming that it will be |
|
// called "context". |
|
this.contextId = contextId; |
|
|
|
// An append-only list of Statements that grows each time this.emit is |
|
// called. |
|
this.listing = []; |
|
|
|
// A sparse array whose keys correspond to locations in this.listing |
|
// that have been marked as branch/jump targets. |
|
this.marked = [true]; |
|
|
|
// The last location will be marked when this.getDispatchLoop is |
|
// called. |
|
this.finalLoc = loc(); |
|
|
|
// A list of all leap.TryEntry statements emitted. |
|
this.tryEntries = []; |
|
|
|
// Each time we evaluate the body of a loop, we tell this.leapManager |
|
// to enter a nested loop context that determines the meaning of break |
|
// and continue statements therein. |
|
this.leapManager = new leap.LeapManager(this); |
|
} |
|
|
|
var Ep = Emitter.prototype; |
|
exports.Emitter = Emitter; |
|
|
|
// Offsets into this.listing that could be used as targets for branches or |
|
// jumps are represented as numeric Literal nodes. This representation has |
|
// the amazingly convenient benefit of allowing the exact value of the |
|
// location to be determined at any time, even after generating code that |
|
// refers to the location. |
|
function loc() { |
|
return t.numericLiteral(-1); |
|
} |
|
|
|
// Sets the exact value of the given location to the offset of the next |
|
// Statement emitted. |
|
Ep.mark = function (loc) { |
|
t.assertLiteral(loc); |
|
var index = this.listing.length; |
|
if (loc.value === -1) { |
|
loc.value = index; |
|
} else { |
|
// Locations can be marked redundantly, but their values cannot change |
|
// once set the first time. |
|
_assert2.default.strictEqual(loc.value, index); |
|
} |
|
this.marked[index] = true; |
|
return loc; |
|
}; |
|
|
|
Ep.emit = function (node) { |
|
if (t.isExpression(node)) { |
|
node = t.expressionStatement(node); |
|
} |
|
|
|
t.assertStatement(node); |
|
this.listing.push(node); |
|
}; |
|
|
|
// Shorthand for emitting assignment statements. This will come in handy |
|
// for assignments to temporary variables. |
|
Ep.emitAssign = function (lhs, rhs) { |
|
this.emit(this.assign(lhs, rhs)); |
|
return lhs; |
|
}; |
|
|
|
// Shorthand for an assignment statement. |
|
Ep.assign = function (lhs, rhs) { |
|
return t.expressionStatement(t.assignmentExpression("=", lhs, rhs)); |
|
}; |
|
|
|
// Convenience function for generating expressions like context.next, |
|
// context.sent, and context.rval. |
|
Ep.contextProperty = function (name, computed) { |
|
return t.memberExpression(this.contextId, computed ? t.stringLiteral(name) : t.identifier(name), !!computed); |
|
}; |
|
|
|
// Shorthand for setting context.rval and jumping to `context.stop()`. |
|
Ep.stop = function (rval) { |
|
if (rval) { |
|
this.setReturnValue(rval); |
|
} |
|
|
|
this.jump(this.finalLoc); |
|
}; |
|
|
|
Ep.setReturnValue = function (valuePath) { |
|
t.assertExpression(valuePath.value); |
|
|
|
this.emitAssign(this.contextProperty("rval"), this.explodeExpression(valuePath)); |
|
}; |
|
|
|
Ep.clearPendingException = function (tryLoc, assignee) { |
|
t.assertLiteral(tryLoc); |
|
|
|
var catchCall = t.callExpression(this.contextProperty("catch", true), [tryLoc]); |
|
|
|
if (assignee) { |
|
this.emitAssign(assignee, catchCall); |
|
} else { |
|
this.emit(catchCall); |
|
} |
|
}; |
|
|
|
// Emits code for an unconditional jump to the given location, even if the |
|
// exact value of the location is not yet known. |
|
Ep.jump = function (toLoc) { |
|
this.emitAssign(this.contextProperty("next"), toLoc); |
|
this.emit(t.breakStatement()); |
|
}; |
|
|
|
// Conditional jump. |
|
Ep.jumpIf = function (test, toLoc) { |
|
t.assertExpression(test); |
|
t.assertLiteral(toLoc); |
|
|
|
this.emit(t.ifStatement(test, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); |
|
}; |
|
|
|
// Conditional jump, with the condition negated. |
|
Ep.jumpIfNot = function (test, toLoc) { |
|
t.assertExpression(test); |
|
t.assertLiteral(toLoc); |
|
|
|
var negatedTest = void 0; |
|
if (t.isUnaryExpression(test) && test.operator === "!") { |
|
// Avoid double negation. |
|
negatedTest = test.argument; |
|
} else { |
|
negatedTest = t.unaryExpression("!", test); |
|
} |
|
|
|
this.emit(t.ifStatement(negatedTest, t.blockStatement([this.assign(this.contextProperty("next"), toLoc), t.breakStatement()]))); |
|
}; |
|
|
|
// Returns a unique MemberExpression that can be used to store and |
|
// retrieve temporary values. Since the object of the member expression is |
|
// the context object, which is presumed to coexist peacefully with all |
|
// other local variables, and since we just increment `nextTempId` |
|
// monotonically, uniqueness is assured. |
|
Ep.makeTempVar = function () { |
|
return this.contextProperty("t" + this.nextTempId++); |
|
}; |
|
|
|
Ep.getContextFunction = function (id) { |
|
return t.functionExpression(id || null /*Anonymous*/ |
|
, [this.contextId], t.blockStatement([this.getDispatchLoop()]), false, // Not a generator anymore! |
|
false // Nor an expression. |
|
); |
|
}; |
|
|
|
// Turns this.listing into a loop of the form |
|
// |
|
// while (1) switch (context.next) { |
|
// case 0: |
|
// ... |
|
// case n: |
|
// return context.stop(); |
|
// } |
|
// |
|
// Each marked location in this.listing will correspond to one generated |
|
// case statement. |
|
Ep.getDispatchLoop = function () { |
|
var self = this; |
|
var cases = []; |
|
var current = void 0; |
|
|
|
// If we encounter a break, continue, or return statement in a switch |
|
// case, we can skip the rest of the statements until the next case. |
|
var alreadyEnded = false; |
|
|
|
self.listing.forEach(function (stmt, i) { |
|
if (self.marked.hasOwnProperty(i)) { |
|
cases.push(t.switchCase(t.numericLiteral(i), current = [])); |
|
alreadyEnded = false; |
|
} |
|
|
|
if (!alreadyEnded) { |
|
current.push(stmt); |
|
if (t.isCompletionStatement(stmt)) alreadyEnded = true; |
|
} |
|
}); |
|
|
|
// Now that we know how many statements there will be in this.listing, |
|
// we can finally resolve this.finalLoc.value. |
|
this.finalLoc.value = this.listing.length; |
|
|
|
cases.push(t.switchCase(this.finalLoc, [ |
|
// Intentionally fall through to the "end" case... |
|
]), |
|
|
|
// So that the runtime can jump to the final location without having |
|
// to know its offset, we provide the "end" case as a synonym. |
|
t.switchCase(t.stringLiteral("end"), [ |
|
// This will check/clear both context.thrown and context.rval. |
|
t.returnStatement(t.callExpression(this.contextProperty("stop"), []))])); |
|
|
|
return t.whileStatement(t.numericLiteral(1), t.switchStatement(t.assignmentExpression("=", this.contextProperty("prev"), this.contextProperty("next")), cases)); |
|
}; |
|
|
|
Ep.getTryLocsList = function () { |
|
if (this.tryEntries.length === 0) { |
|
// To avoid adding a needless [] to the majority of runtime.wrap |
|
// argument lists, force the caller to handle this case specially. |
|
return null; |
|
} |
|
|
|
var lastLocValue = 0; |
|
|
|
return t.arrayExpression(this.tryEntries.map(function (tryEntry) { |
|
var thisLocValue = tryEntry.firstLoc.value; |
|
_assert2.default.ok(thisLocValue >= lastLocValue, "try entries out of order"); |
|
lastLocValue = thisLocValue; |
|
|
|
var ce = tryEntry.catchEntry; |
|
var fe = tryEntry.finallyEntry; |
|
|
|
var locs = [tryEntry.firstLoc, |
|
// The null here makes a hole in the array. |
|
ce ? ce.firstLoc : null]; |
|
|
|
if (fe) { |
|
locs[2] = fe.firstLoc; |
|
locs[3] = fe.afterLoc; |
|
} |
|
|
|
return t.arrayExpression(locs); |
|
})); |
|
}; |
|
|
|
// All side effects must be realized in order. |
|
|
|
// If any subexpression harbors a leap, all subexpressions must be |
|
// neutered of side effects. |
|
|
|
// No destructive modification of AST nodes. |
|
|
|
Ep.explode = function (path, ignoreResult) { |
|
var node = path.node; |
|
var self = this; |
|
|
|
t.assertNode(node); |
|
|
|
if (t.isDeclaration(node)) throw getDeclError(node); |
|
|
|
if (t.isStatement(node)) return self.explodeStatement(path); |
|
|
|
if (t.isExpression(node)) return self.explodeExpression(path, ignoreResult); |
|
|
|
switch (node.type) { |
|
case "Program": |
|
return path.get("body").map(self.explodeStatement, self); |
|
|
|
case "VariableDeclarator": |
|
throw getDeclError(node); |
|
|
|
// These node types should be handled by their parent nodes |
|
// (ObjectExpression, SwitchStatement, and TryStatement, respectively). |
|
case "Property": |
|
case "SwitchCase": |
|
case "CatchClause": |
|
throw new Error(node.type + " nodes should be handled by their parents"); |
|
|
|
default: |
|
throw new Error("unknown Node of type " + (0, _stringify2.default)(node.type)); |
|
} |
|
}; |
|
|
|
function getDeclError(node) { |
|
return new Error("all declarations should have been transformed into " + "assignments before the Exploder began its work: " + (0, _stringify2.default)(node)); |
|
} |
|
|
|
Ep.explodeStatement = function (path, labelId) { |
|
var stmt = path.node; |
|
var self = this; |
|
var before = void 0, |
|
after = void 0, |
|
head = void 0; |
|
|
|
t.assertStatement(stmt); |
|
|
|
if (labelId) { |
|
t.assertIdentifier(labelId); |
|
} else { |
|
labelId = null; |
|
} |
|
|
|
// Explode BlockStatement nodes even if they do not contain a yield, |
|
// because we don't want or need the curly braces. |
|
if (t.isBlockStatement(stmt)) { |
|
path.get("body").forEach(function (path) { |
|
self.explodeStatement(path); |
|
}); |
|
return; |
|
} |
|
|
|
if (!meta.containsLeap(stmt)) { |
|
// Technically we should be able to avoid emitting the statement |
|
// altogether if !meta.hasSideEffects(stmt), but that leads to |
|
// confusing generated code (for instance, `while (true) {}` just |
|
// disappears) and is probably a more appropriate job for a dedicated |
|
// dead code elimination pass. |
|
self.emit(stmt); |
|
return; |
|
} |
|
|
|
switch (stmt.type) { |
|
case "ExpressionStatement": |
|
self.explodeExpression(path.get("expression"), true); |
|
break; |
|
|
|
case "LabeledStatement": |
|
after = loc(); |
|
|
|
// Did you know you can break from any labeled block statement or |
|
// control structure? Well, you can! Note: when a labeled loop is |
|
// encountered, the leap.LabeledEntry created here will immediately |
|
// enclose a leap.LoopEntry on the leap manager's stack, and both |
|
// entries will have the same label. Though this works just fine, it |
|
// may seem a bit redundant. In theory, we could check here to |
|
// determine if stmt knows how to handle its own label; for example, |
|
// stmt happens to be a WhileStatement and so we know it's going to |
|
// establish its own LoopEntry when we explode it (below). Then this |
|
// LabeledEntry would be unnecessary. Alternatively, we might be |
|
// tempted not to pass stmt.label down into self.explodeStatement, |
|
// because we've handled the label here, but that's a mistake because |
|
// labeled loops may contain labeled continue statements, which is not |
|
// something we can handle in this generic case. All in all, I think a |
|
// little redundancy greatly simplifies the logic of this case, since |
|
// it's clear that we handle all possible LabeledStatements correctly |
|
// here, regardless of whether they interact with the leap manager |
|
// themselves. Also remember that labels and break/continue-to-label |
|
// statements are rare, and all of this logic happens at transform |
|
// time, so it has no additional runtime cost. |
|
self.leapManager.withEntry(new leap.LabeledEntry(after, stmt.label), function () { |
|
self.explodeStatement(path.get("body"), stmt.label); |
|
}); |
|
|
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "WhileStatement": |
|
before = loc(); |
|
after = loc(); |
|
|
|
self.mark(before); |
|
self.jumpIfNot(self.explodeExpression(path.get("test")), after); |
|
self.leapManager.withEntry(new leap.LoopEntry(after, before, labelId), function () { |
|
self.explodeStatement(path.get("body")); |
|
}); |
|
self.jump(before); |
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "DoWhileStatement": |
|
var first = loc(); |
|
var test = loc(); |
|
after = loc(); |
|
|
|
self.mark(first); |
|
self.leapManager.withEntry(new leap.LoopEntry(after, test, labelId), function () { |
|
self.explode(path.get("body")); |
|
}); |
|
self.mark(test); |
|
self.jumpIf(self.explodeExpression(path.get("test")), first); |
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "ForStatement": |
|
head = loc(); |
|
var update = loc(); |
|
after = loc(); |
|
|
|
if (stmt.init) { |
|
// We pass true here to indicate that if stmt.init is an expression |
|
// then we do not care about its result. |
|
self.explode(path.get("init"), true); |
|
} |
|
|
|
self.mark(head); |
|
|
|
if (stmt.test) { |
|
self.jumpIfNot(self.explodeExpression(path.get("test")), after); |
|
} else { |
|
// No test means continue unconditionally. |
|
} |
|
|
|
self.leapManager.withEntry(new leap.LoopEntry(after, update, labelId), function () { |
|
self.explodeStatement(path.get("body")); |
|
}); |
|
|
|
self.mark(update); |
|
|
|
if (stmt.update) { |
|
// We pass true here to indicate that if stmt.update is an |
|
// expression then we do not care about its result. |
|
self.explode(path.get("update"), true); |
|
} |
|
|
|
self.jump(head); |
|
|
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "TypeCastExpression": |
|
return self.explodeExpression(path.get("expression")); |
|
|
|
case "ForInStatement": |
|
head = loc(); |
|
after = loc(); |
|
|
|
var keyIterNextFn = self.makeTempVar(); |
|
self.emitAssign(keyIterNextFn, t.callExpression(util.runtimeProperty("keys"), [self.explodeExpression(path.get("right"))])); |
|
|
|
self.mark(head); |
|
|
|
var keyInfoTmpVar = self.makeTempVar(); |
|
self.jumpIf(t.memberExpression(t.assignmentExpression("=", keyInfoTmpVar, t.callExpression(keyIterNextFn, [])), t.identifier("done"), false), after); |
|
|
|
self.emitAssign(stmt.left, t.memberExpression(keyInfoTmpVar, t.identifier("value"), false)); |
|
|
|
self.leapManager.withEntry(new leap.LoopEntry(after, head, labelId), function () { |
|
self.explodeStatement(path.get("body")); |
|
}); |
|
|
|
self.jump(head); |
|
|
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "BreakStatement": |
|
self.emitAbruptCompletion({ |
|
type: "break", |
|
target: self.leapManager.getBreakLoc(stmt.label) |
|
}); |
|
|
|
break; |
|
|
|
case "ContinueStatement": |
|
self.emitAbruptCompletion({ |
|
type: "continue", |
|
target: self.leapManager.getContinueLoc(stmt.label) |
|
}); |
|
|
|
break; |
|
|
|
case "SwitchStatement": |
|
// Always save the discriminant into a temporary variable in case the |
|
// test expressions overwrite values like context.sent. |
|
var disc = self.emitAssign(self.makeTempVar(), self.explodeExpression(path.get("discriminant"))); |
|
|
|
after = loc(); |
|
var defaultLoc = loc(); |
|
var condition = defaultLoc; |
|
var caseLocs = []; |
|
|
|
// If there are no cases, .cases might be undefined. |
|
var cases = stmt.cases || []; |
|
|
|
for (var i = cases.length - 1; i >= 0; --i) { |
|
var c = cases[i]; |
|
t.assertSwitchCase(c); |
|
|
|
if (c.test) { |
|
condition = t.conditionalExpression(t.binaryExpression("===", disc, c.test), caseLocs[i] = loc(), condition); |
|
} else { |
|
caseLocs[i] = defaultLoc; |
|
} |
|
} |
|
|
|
var discriminant = path.get("discriminant"); |
|
util.replaceWithOrRemove(discriminant, condition); |
|
self.jump(self.explodeExpression(discriminant)); |
|
|
|
self.leapManager.withEntry(new leap.SwitchEntry(after), function () { |
|
path.get("cases").forEach(function (casePath) { |
|
var i = casePath.key; |
|
self.mark(caseLocs[i]); |
|
|
|
casePath.get("consequent").forEach(function (path) { |
|
self.explodeStatement(path); |
|
}); |
|
}); |
|
}); |
|
|
|
self.mark(after); |
|
if (defaultLoc.value === -1) { |
|
self.mark(defaultLoc); |
|
_assert2.default.strictEqual(after.value, defaultLoc.value); |
|
} |
|
|
|
break; |
|
|
|
case "IfStatement": |
|
var elseLoc = stmt.alternate && loc(); |
|
after = loc(); |
|
|
|
self.jumpIfNot(self.explodeExpression(path.get("test")), elseLoc || after); |
|
|
|
self.explodeStatement(path.get("consequent")); |
|
|
|
if (elseLoc) { |
|
self.jump(after); |
|
self.mark(elseLoc); |
|
self.explodeStatement(path.get("alternate")); |
|
} |
|
|
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "ReturnStatement": |
|
self.emitAbruptCompletion({ |
|
type: "return", |
|
value: self.explodeExpression(path.get("argument")) |
|
}); |
|
|
|
break; |
|
|
|
case "WithStatement": |
|
throw new Error("WithStatement not supported in generator functions."); |
|
|
|
case "TryStatement": |
|
after = loc(); |
|
|
|
var handler = stmt.handler; |
|
|
|
var catchLoc = handler && loc(); |
|
var catchEntry = catchLoc && new leap.CatchEntry(catchLoc, handler.param); |
|
|
|
var finallyLoc = stmt.finalizer && loc(); |
|
var finallyEntry = finallyLoc && new leap.FinallyEntry(finallyLoc, after); |
|
|
|
var tryEntry = new leap.TryEntry(self.getUnmarkedCurrentLoc(), catchEntry, finallyEntry); |
|
|
|
self.tryEntries.push(tryEntry); |
|
self.updateContextPrevLoc(tryEntry.firstLoc); |
|
|
|
self.leapManager.withEntry(tryEntry, function () { |
|
self.explodeStatement(path.get("block")); |
|
|
|
if (catchLoc) { |
|
if (finallyLoc) { |
|
// If we have both a catch block and a finally block, then |
|
// because we emit the catch block first, we need to jump over |
|
// it to the finally block. |
|
self.jump(finallyLoc); |
|
} else { |
|
// If there is no finally block, then we need to jump over the |
|
// catch block to the fall-through location. |
|
self.jump(after); |
|
} |
|
|
|
self.updateContextPrevLoc(self.mark(catchLoc)); |
|
|
|
var bodyPath = path.get("handler.body"); |
|
var safeParam = self.makeTempVar(); |
|
self.clearPendingException(tryEntry.firstLoc, safeParam); |
|
|
|
bodyPath.traverse(catchParamVisitor, { |
|
safeParam: safeParam, |
|
catchParamName: handler.param.name |
|
}); |
|
|
|
self.leapManager.withEntry(catchEntry, function () { |
|
self.explodeStatement(bodyPath); |
|
}); |
|
} |
|
|
|
if (finallyLoc) { |
|
self.updateContextPrevLoc(self.mark(finallyLoc)); |
|
|
|
self.leapManager.withEntry(finallyEntry, function () { |
|
self.explodeStatement(path.get("finalizer")); |
|
}); |
|
|
|
self.emit(t.returnStatement(t.callExpression(self.contextProperty("finish"), [finallyEntry.firstLoc]))); |
|
} |
|
}); |
|
|
|
self.mark(after); |
|
|
|
break; |
|
|
|
case "ThrowStatement": |
|
self.emit(t.throwStatement(self.explodeExpression(path.get("argument")))); |
|
|
|
break; |
|
|
|
default: |
|
throw new Error("unknown Statement of type " + (0, _stringify2.default)(stmt.type)); |
|
} |
|
}; |
|
|
|
var catchParamVisitor = { |
|
Identifier: function Identifier(path, state) { |
|
if (path.node.name === state.catchParamName && util.isReference(path)) { |
|
util.replaceWithOrRemove(path, state.safeParam); |
|
} |
|
}, |
|
|
|
Scope: function Scope(path, state) { |
|
if (path.scope.hasOwnBinding(state.catchParamName)) { |
|
// Don't descend into nested scopes that shadow the catch |
|
// parameter with their own declarations. |
|
path.skip(); |
|
} |
|
} |
|
}; |
|
|
|
Ep.emitAbruptCompletion = function (record) { |
|
if (!isValidCompletion(record)) { |
|
_assert2.default.ok(false, "invalid completion record: " + (0, _stringify2.default)(record)); |
|
} |
|
|
|
_assert2.default.notStrictEqual(record.type, "normal", "normal completions are not abrupt"); |
|
|
|
var abruptArgs = [t.stringLiteral(record.type)]; |
|
|
|
if (record.type === "break" || record.type === "continue") { |
|
t.assertLiteral(record.target); |
|
abruptArgs[1] = record.target; |
|
} else if (record.type === "return" || record.type === "throw") { |
|
if (record.value) { |
|
t.assertExpression(record.value); |
|
abruptArgs[1] = record.value; |
|
} |
|
} |
|
|
|
this.emit(t.returnStatement(t.callExpression(this.contextProperty("abrupt"), abruptArgs))); |
|
}; |
|
|
|
function isValidCompletion(record) { |
|
var type = record.type; |
|
|
|
if (type === "normal") { |
|
return !hasOwn.call(record, "target"); |
|
} |
|
|
|
if (type === "break" || type === "continue") { |
|
return !hasOwn.call(record, "value") && t.isLiteral(record.target); |
|
} |
|
|
|
if (type === "return" || type === "throw") { |
|
return hasOwn.call(record, "value") && !hasOwn.call(record, "target"); |
|
} |
|
|
|
return false; |
|
} |
|
|
|
// Not all offsets into emitter.listing are potential jump targets. For |
|
// example, execution typically falls into the beginning of a try block |
|
// without jumping directly there. This method returns the current offset |
|
// without marking it, so that a switch case will not necessarily be |
|
// generated for this offset (I say "not necessarily" because the same |
|
// location might end up being marked in the process of emitting other |
|
// statements). There's no logical harm in marking such locations as jump |
|
// targets, but minimizing the number of switch cases keeps the generated |
|
// code shorter. |
|
Ep.getUnmarkedCurrentLoc = function () { |
|
return t.numericLiteral(this.listing.length); |
|
}; |
|
|
|
// The context.prev property takes the value of context.next whenever we |
|
// evaluate the switch statement discriminant, which is generally good |
|
// enough for tracking the last location we jumped to, but sometimes |
|
// context.prev needs to be more precise, such as when we fall |
|
// successfully out of a try block and into a finally block without |
|
// jumping. This method exists to update context.prev to the freshest |
|
// available location. If we were implementing a full interpreter, we |
|
// would know the location of the current instruction with complete |
|
// precision at all times, but we don't have that luxury here, as it would |
|
// be costly and verbose to set context.prev before every statement. |
|
Ep.updateContextPrevLoc = function (loc) { |
|
if (loc) { |
|
t.assertLiteral(loc); |
|
|
|
if (loc.value === -1) { |
|
// If an uninitialized location literal was passed in, set its value |
|
// to the current this.listing.length. |
|
loc.value = this.listing.length; |
|
} else { |
|
// Otherwise assert that the location matches the current offset. |
|
_assert2.default.strictEqual(loc.value, this.listing.length); |
|
} |
|
} else { |
|
loc = this.getUnmarkedCurrentLoc(); |
|
} |
|
|
|
// Make sure context.prev is up to date in case we fell into this try |
|
// statement without jumping to it. TODO Consider avoiding this |
|
// assignment when we know control must have jumped here. |
|
this.emitAssign(this.contextProperty("prev"), loc); |
|
}; |
|
|
|
Ep.explodeExpression = function (path, ignoreResult) { |
|
var expr = path.node; |
|
if (expr) { |
|
t.assertExpression(expr); |
|
} else { |
|
return expr; |
|
} |
|
|
|
var self = this; |
|
var result = void 0; // Used optionally by several cases below. |
|
var after = void 0; |
|
|
|
function finish(expr) { |
|
t.assertExpression(expr); |
|
if (ignoreResult) { |
|
self.emit(expr); |
|
} else { |
|
return expr; |
|
} |
|
} |
|
|
|
// If the expression does not contain a leap, then we either emit the |
|
// expression as a standalone statement or return it whole. |
|
if (!meta.containsLeap(expr)) { |
|
return finish(expr); |
|
} |
|
|
|
// If any child contains a leap (such as a yield or labeled continue or |
|
// break statement), then any sibling subexpressions will almost |
|
// certainly have to be exploded in order to maintain the order of their |
|
// side effects relative to the leaping child(ren). |
|
var hasLeapingChildren = meta.containsLeap.onlyChildren(expr); |
|
|
|
// In order to save the rest of explodeExpression from a combinatorial |
|
// trainwreck of special cases, explodeViaTempVar is responsible for |
|
// deciding when a subexpression needs to be "exploded," which is my |
|
// very technical term for emitting the subexpression as an assignment |
|
// to a temporary variable and the substituting the temporary variable |
|
// for the original subexpression. Think of exploded view diagrams, not |
|
// Michael Bay movies. The point of exploding subexpressions is to |
|
// control the precise order in which the generated code realizes the |
|
// side effects of those subexpressions. |
|
function explodeViaTempVar(tempVar, childPath, ignoreChildResult) { |
|
_assert2.default.ok(!ignoreChildResult || !tempVar, "Ignoring the result of a child expression but forcing it to " + "be assigned to a temporary variable?"); |
|
|
|
var result = self.explodeExpression(childPath, ignoreChildResult); |
|
|
|
if (ignoreChildResult) { |
|
// Side effects already emitted above. |
|
|
|
} else if (tempVar || hasLeapingChildren && !t.isLiteral(result)) { |
|
// If tempVar was provided, then the result will always be assigned |
|
// to it, even if the result does not otherwise need to be assigned |
|
// to a temporary variable. When no tempVar is provided, we have |
|
// the flexibility to decide whether a temporary variable is really |
|
// necessary. Unfortunately, in general, a temporary variable is |
|
// required whenever any child contains a yield expression, since it |
|
// is difficult to prove (at all, let alone efficiently) whether |
|
// this result would evaluate to the same value before and after the |
|
// yield (see #206). One narrow case where we can prove it doesn't |
|
// matter (and thus we do not need a temporary variable) is when the |
|
// result in question is a Literal value. |
|
result = self.emitAssign(tempVar || self.makeTempVar(), result); |
|
} |
|
return result; |
|
} |
|
|
|
// If ignoreResult is true, then we must take full responsibility for |
|
// emitting the expression with all its side effects, and we should not |
|
// return a result. |
|
|
|
switch (expr.type) { |
|
case "MemberExpression": |
|
return finish(t.memberExpression(self.explodeExpression(path.get("object")), expr.computed ? explodeViaTempVar(null, path.get("property")) : expr.property, expr.computed)); |
|
|
|
case "CallExpression": |
|
var calleePath = path.get("callee"); |
|
var argsPath = path.get("arguments"); |
|
|
|
var newCallee = void 0; |
|
var newArgs = []; |
|
|
|
var hasLeapingArgs = false; |
|
argsPath.forEach(function (argPath) { |
|
hasLeapingArgs = hasLeapingArgs || meta.containsLeap(argPath.node); |
|
}); |
|
|
|
if (t.isMemberExpression(calleePath.node)) { |
|
if (hasLeapingArgs) { |
|
// If the arguments of the CallExpression contained any yield |
|
// expressions, then we need to be sure to evaluate the callee |
|
// before evaluating the arguments, but if the callee was a member |
|
// expression, then we must be careful that the object of the |
|
// member expression still gets bound to `this` for the call. |
|
|
|
var newObject = explodeViaTempVar( |
|
// Assign the exploded callee.object expression to a temporary |
|
// variable so that we can use it twice without reevaluating it. |
|
self.makeTempVar(), calleePath.get("object")); |
|
|
|
var newProperty = calleePath.node.computed ? explodeViaTempVar(null, calleePath.get("property")) : calleePath.node.property; |
|
|
|
newArgs.unshift(newObject); |
|
|
|
newCallee = t.memberExpression(t.memberExpression(newObject, newProperty, calleePath.node.computed), t.identifier("call"), false); |
|
} else { |
|
newCallee = self.explodeExpression(calleePath); |
|
} |
|
} else { |
|
newCallee = explodeViaTempVar(null, calleePath); |
|
|
|
if (t.isMemberExpression(newCallee)) { |
|
// If the callee was not previously a MemberExpression, then the |
|
// CallExpression was "unqualified," meaning its `this` object |
|
// should be the global object. If the exploded expression has |
|
// become a MemberExpression (e.g. a context property, probably a |
|
// temporary variable), then we need to force it to be unqualified |
|
// by using the (0, object.property)(...) trick; otherwise, it |
|
// will receive the object of the MemberExpression as its `this` |
|
// object. |
|
newCallee = t.sequenceExpression([t.numericLiteral(0), newCallee]); |
|
} |
|
} |
|
|
|
argsPath.forEach(function (argPath) { |
|
newArgs.push(explodeViaTempVar(null, argPath)); |
|
}); |
|
|
|
return finish(t.callExpression(newCallee, newArgs)); |
|
|
|
case "NewExpression": |
|
return finish(t.newExpression(explodeViaTempVar(null, path.get("callee")), path.get("arguments").map(function (argPath) { |
|
return explodeViaTempVar(null, argPath); |
|
}))); |
|
|
|
case "ObjectExpression": |
|
return finish(t.objectExpression(path.get("properties").map(function (propPath) { |
|
if (propPath.isObjectProperty()) { |
|
return t.objectProperty(propPath.node.key, explodeViaTempVar(null, propPath.get("value")), propPath.node.computed); |
|
} else { |
|
return propPath.node; |
|
} |
|
}))); |
|
|
|
case "ArrayExpression": |
|
return finish(t.arrayExpression(path.get("elements").map(function (elemPath) { |
|
return explodeViaTempVar(null, elemPath); |
|
}))); |
|
|
|
case "SequenceExpression": |
|
var lastIndex = expr.expressions.length - 1; |
|
|
|
path.get("expressions").forEach(function (exprPath) { |
|
if (exprPath.key === lastIndex) { |
|
result = self.explodeExpression(exprPath, ignoreResult); |
|
} else { |
|
self.explodeExpression(exprPath, true); |
|
} |
|
}); |
|
|
|
return result; |
|
|
|
case "LogicalExpression": |
|
after = loc(); |
|
|
|
if (!ignoreResult) { |
|
result = self.makeTempVar(); |
|
} |
|
|
|
var left = explodeViaTempVar(result, path.get("left")); |
|
|
|
if (expr.operator === "&&") { |
|
self.jumpIfNot(left, after); |
|
} else { |
|
_assert2.default.strictEqual(expr.operator, "||"); |
|
self.jumpIf(left, after); |
|
} |
|
|
|
explodeViaTempVar(result, path.get("right"), ignoreResult); |
|
|
|
self.mark(after); |
|
|
|
return result; |
|
|
|
case "ConditionalExpression": |
|
var elseLoc = loc(); |
|
after = loc(); |
|
var test = self.explodeExpression(path.get("test")); |
|
|
|
self.jumpIfNot(test, elseLoc); |
|
|
|
if (!ignoreResult) { |
|
result = self.makeTempVar(); |
|
} |
|
|
|
explodeViaTempVar(result, path.get("consequent"), ignoreResult); |
|
self.jump(after); |
|
|
|
self.mark(elseLoc); |
|
explodeViaTempVar(result, path.get("alternate"), ignoreResult); |
|
|
|
self.mark(after); |
|
|
|
return result; |
|
|
|
case "UnaryExpression": |
|
return finish(t.unaryExpression(expr.operator, |
|
// Can't (and don't need to) break up the syntax of the argument. |
|
// Think about delete a[b]. |
|
self.explodeExpression(path.get("argument")), !!expr.prefix)); |
|
|
|
case "BinaryExpression": |
|
return finish(t.binaryExpression(expr.operator, explodeViaTempVar(null, path.get("left")), explodeViaTempVar(null, path.get("right")))); |
|
|
|
case "AssignmentExpression": |
|
return finish(t.assignmentExpression(expr.operator, self.explodeExpression(path.get("left")), self.explodeExpression(path.get("right")))); |
|
|
|
case "UpdateExpression": |
|
return finish(t.updateExpression(expr.operator, self.explodeExpression(path.get("argument")), expr.prefix)); |
|
|
|
case "YieldExpression": |
|
after = loc(); |
|
var arg = expr.argument && self.explodeExpression(path.get("argument")); |
|
|
|
if (arg && expr.delegate) { |
|
var _result = self.makeTempVar(); |
|
|
|
self.emit(t.returnStatement(t.callExpression(self.contextProperty("delegateYield"), [arg, t.stringLiteral(_result.property.name), after]))); |
|
|
|
self.mark(after); |
|
|
|
return _result; |
|
} |
|
|
|
self.emitAssign(self.contextProperty("next"), after); |
|
self.emit(t.returnStatement(arg || null)); |
|
self.mark(after); |
|
|
|
return self.contextProperty("sent"); |
|
|
|
default: |
|
throw new Error("unknown Expression of type " + (0, _stringify2.default)(expr.type)); |
|
} |
|
}; |